

A BETTER WAY TO BEAUTIFUL

WELCOME!

San Diego County Water Authority

952

San Diego County Water Authority

- Wholesale water agency created by the State Legislature in 1944
- 24 member agencies
- 3.2 million people
- 920,000 acre service area
- 97% of county's population
- Builds, owns, operates and maintains regional water infrastructure

San Diego County Water Authority

We're at the End of a Very Long "Pipeline"

Sources of San Diego County's Water Supply (2010-2014 five-year average)

Where is residential water used?

Q: What is the Annual Rainfall in San Diego?

Avg. Annual Precipitation-San Diego (data from 1914-2011)

*Data taken Rssweather.com **Data ranges from 1914-2000

San Diego Has Plenty of Sunshine...and Heat

Cooler

All Dry on the Western Front Comparison of Snowpack in the Sierra Nevada

} January 2013

February 2014

} January 2015

Lake Oroville – State Water Project Reservoir July 2011 - 100% Capacity

Lake Oroville – State Water Project Reservoir Jan. 2014 - 36% Capacity

Lake Oroville – State Water Project Reservoir Oct. 2015 - 29% Capacity

San Diego County 1990 vs 2015

Water Applied vs. Plant Water Use

What you're putting on your plants vs. what they really need

Actual Plant Water Use
Landscape Water Applied

Before

Assistant Water Resources Specialist San Diego County Water Authority (858)522-6705 jgerman@sdcwa.org

A BETTER WAY TO BEAUTIFUL Let's Get Started!

Housekeeping

Housekeeping:

Breaks: Mid class, after lab Restrooms Please silence your cell phones If you can't attend, contact us!

WaterSmart Series Contacts:

Sharon LoweProject Manager619-295-5115 x 233Lucretia SarmientoProject Coordinator619-295-5115 x 221DeLorenzo International Landscape Architecture + PlanningEmail:landscapemakeover@sdcwa.org

Instructor ...

Please introduce yourself...

- Name
- Geographic area
- Personal Goals

Thank you!

How many of you are here to ...

- Reduce your water use?
- Learn which plants to use?
- Get curb appeal?
- Get a planting plan?
- Learn how to retrofit irrigation?
- Reduce maintenance?

Course Goals

Teach Homeowners to:

- 1. Identify Your Landscape Target
- 2. Create a Basic Plot Plan
- 3. Evaluate Your Site
- 4. Design Your WaterSmart Landscape
- 5. Implement Your Plan
- 6. Care for Your WaterSmart Landscape

Series Topics:

Class 1

Let's Get Started: Watersheds, Base Plan, Scale, Soil, Stormwater & Site Evaluation

Class 2

Shaping Spaces:

Landscape Design Fundamentals, Plant Selection, & Functional Design

Class 3

<u>Make it Happen:</u> Irrigation Design, Turf Removal, Implementation, & Maintenance

Class 4

water smart

, Design Coach: LID, Planting and Irrigation Plans

Class 1 Let's Get Started Objectives

Reasons to be WaterSmart

Course Orientation

Goals

Materials

Why Remove Turf?

Water Requirements Rainfall in SD Sample Projects Steps to WaterSmart

```
1. Identify Your Target
```

- 2. Create a Plot Plan
- 3. Evaluate Your Site Watersheds First Flush Soil Managing On-Site Water Techniques

Course Materials

Notebook

- Presentations
- · Homework and work sheets at end of each Class section
- Support Materials: Reference material and some larger slides
- WaterSmart Shade Plant Palette
- Final Survey
- Class schedule on back

WaterSmart Guide for Homeowners

- Details of entire process
- Reinforces class material
- WaterSmart Plant Palettes

Sustainable Landscape Guidelines

A Watershed Approach to Landscaping

Base Plans

- Class 1: L-1 Property with Details
 - L-2 for Low Impact Development
- Class 2: L-3 Planting Plan with fewer details
- Class 3: L-4 Irrigation Plan
- Class 4: Bring them ALL

E-Learning Videos: http://landscapemakeover.watersmartsd.org

Homework

Read Pages 1-17

Read Pages 1-45

Recommended Materials

Scale

Reference: Sunset Western Garden Book

Circle Template

Average Rainfall in San Diego Integrated Zone Map

Monthly Average Reference Evapotranspiration by ETo Zone (inches/month)

Zone	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
1	0.93	1.40	2.48	3.30	4.03	4.50	4.85	4.03	3.30	2.48	1.20	0.62	32.9
- 4	1.86	2.24	3.41	4.50	5.27	5.70	5.89	5.58	4.50	3.41	2.40	1.86	46.6
6	1.86	2.24	3.41	4.80	5.58	6.30	6.51	6.20	4.80	3.72	2.40	1.86	49.7
. 9	2.17	2.80	4.03	5.10	5.89	6.60	7.44	6.82	5.70	4.03	2.70	1.06	55.1
16	1.55	2.52	4.03	5.70	7.75	8.70	9.30	8.37	6.30	4.34	2.40	1.55	62.5
18	2.48	3.36	5.27	6.90	8.68	9.60	9.61	8.68	6.90	4.96	3.00	2.17	71.6

Regional Perspective Turf's Water Needs vs. Annual Rainfall

Regional Perspective

Turf's Water Needs vs. Annual Rainfall

Regional Perspective

- Easy water savings!
- Landscapes can easily be retrofitted for water efficiency
- Some skills and technical knowledge are necessary
- Our goal: to educate you to succeed!

After: Approximately 6 months after installation

After: Approximately 1 year after installation

After: Approximately 2 years after installation

Close Up Details

WaterSmart Landscapes

WaterSmart Landscapes

Before

After

WaterSmart Landscapes

Steps to WaterSmart Landscape Design Process Overview

LID Plan

Hardscape & Preliminary Finished Planting Planting Plan Plan

Irrigation Plan

water smart

Steps to WaterSmart Landscape Implementation Overview

Planting Plan

Demolition

Contouring

Soil Prep

Irrigation

water smar

Plant Placement

Installed

Two Years Later

If you don't know where you're going, anywhere will do.

Landscape Target Factors:

- Turf Area
- Plant Selection
- Irrigation Efficiency

Two Factors:

• Irrigation Efficiency

Plant Selection

Use Pages 8 and 9 in your Homeowner's Guide

Plant Selection:

PLANT FACTOR- represents the estimated percent or portion of supplemental water needed relative to the **Eto** value of particular location

Irrigation Efficiency

Obsolete Conventional Overhead Spray Heads

Medium Rotator Nozzles

High In-Line Drip emitters Bubblers

WaterSmart Star Rating

Maximum water savings potential. Congratulations!

Basic Plot Plan: A scale drawing of the property, drawn in accurate proportion using a standard measurement to represent one foot

water smar

Basic Plot Plan L-1 provided for you

- Bird's Eye View
- Drawn to scale
- Locates house and permanent features
- North Arrow
- Irrigation system info
- Dynamic PSI
- Turf: Cool / Warm Season
- Estimated water use for turf

Scales: Architectural and Engineering

Standard Size Properties:

1/4 Scale: 1/4" = 1' or 1" = 4' 1/8 Scale: 1/8" = 1' or 1" = 8'

Large Size Properties:

1/10 Scale: 1" = 10' 1/20 Scale: 1" = 20

Measure your property

- Start with one dominant point to measure from (i.e. a wall corner)
- Locate features that stay (walls, hardscape, trees, fences, etc.)
- Alternate: use outside source (Property Description, Google Earth)

water sma

Step 2: Create a Basic Plot Plan

Using Graph Paper

- Select grid paper to match scale
- Draw in scale on grid paper
- Align "0" and measure
- Add Legend:
 - Scale
 - N arrow

Step 2: Create a Plot Plan

Measuring in Scale

Architectural Scale: 1/8" or 1/4" Scale Ex: Measuring 5' in scale

Standard Inch Ruler of 1/8" = 1'0" Scale

Standard Inch Ruler of 1/4" = 1'0" Scale

Architectural Scale of 1/8" = 1'0" Scale

Architectural Scale of 1/4" = 1'0" Scale

Step 2: Create a Plot Plan

Measuring in Scale

Engineering Scale: 1/10" or 1/20" Scale Ex: Measuring 8' in scale

Decimal Ruler 1/10" = 1'0"

Engineering Scale 1/10" = 1'0"

Engineering Scale 1/20" = 1'0"

Step 2: Plot Plan: Alternative

Without putting it on paper

Flag Method

- Mark flags with selected plants and size
- Place flags for each plant

Step 2: Plot Plan: Alternative

Without putting it on paper

Flag Method

- Plan & measure for mature plants
- Rearrange as needed
- Count to create plant list
- Plant according to flags

What is a Watershed?

 A watershed is the area of land where all of the water that falls in it and drains off of it goes to a common outlet.

You live in a Watershed

- San Diego has 11 westward draining Watersheds
- Where does it flow from?
 - Tecate Divide
- Where does it flow to?
 - Eastern side: desert aquifers & Salton Sea
 - Western side: canyons, streams, western aquafers & Ocean

You live in a Watershed

Benefits to Using a Watershed Approach to Landscaping

- Improves environment
- Protects our waters
- Preserves our coast
- Reduces Beach Closures
 from pollution
- Saves water in landscape
- Saves energy used in water transport

Your yard is a Mini-Watershed

Map your drainage

- Where does it flow from?
- Where does it flow to?

Step 3: Evaluate Your Site: Soil and Watershed

Evaluate Your Drainage Record notes on your LID L-2 plan

- Where does it flow from?
 - Downspouts
 - Drains: French, planters, Concrete
 - Swales
 - Slopes

Step 3: Evaluate Your Site: Soil and Watershed

Slopes & Hillsides

- How steep is your slope?
 - Run = Horizontal distance
 - Rise = Vertical distance
 - Slope = (Rise /Run)* 100

Ex: Rise = 24" Run = 20' = 20'x12" = 240" Slope = (24"/240")*100 = 10%

Slopes & Hillsides: Estimating

- Slope formula: (Rise/Run) *100
- Slope examples:

- Estimate your slope on your L-2 plan for your site evaluation
- Use Soil Building Mulch type (brush Mulch, Chipped Mulch with specified texture) on all slopes
- Decomposed Granite (DG) used only on slopes less than 5%

Step 3:

Evaluate Your Site: Soil and Watershed

Evaluate Your Drainage Record notes on your LID L-2 plan

- Where does it flow to?
 - Drainage system to gutter?
 - Direction of flow from slopes?
 - Where does it pool?
 - Permeability of areas?
 - Soil infiltration rate?
 - Rain barrel?
 - Gutter to Storm Drains to Ocean

Step 3: Evaluate Your Site: Soil and Watershed

LID Base Plan (L-2):

Evaluate Your Drainage for Your LID

Record notes on your L-2 plan

Step 3: Evaluate Your Site: Soil and Watershed

Finished LID Plan (L-2) Example:

Soil: Why Do We Care?

- Soil can cleanse water
- Soil can store water
- Soil influences everything related to water
 - Infiltration
 - Holding capacity
 - Movement
 - Irrigation scheduling

Mineral

Organic

Pore Space

Mineral

Organic

Pore Space

Soil Texture

Particle Type		Water Movement (Drainage)	Water Holding	Nutrient Holding
Sand		Fast	No	No
	Ş			
Silt		Medium	Medium	Medium
١				
Clay	2	Slow	Yes,	Rich!
6			wet	

water smart

Medium Yes

Yes

Determining Soil Texture

- Soil Sampling: Dig a hole
 - Remove mulch or surface matter
 - Dig down approx. 6"
 - Take sample from side of hole

Determining Soil Texture

USDA Soil Texture Pyramid

water smart

USDA Soil Texture Pyramid

Determining Soil Texture

- Want more?
- Find the "Thien Feel Test" on line

Taken from USDA-NCRS (Modified from S.J. Thien. 1979. *A flow diagram for teaching texture by feel analysis.* Journal of Agronomic Education. 8:54-55.)

Determining Soil Texture

- "Thein Feel Test"
 - Wet the soil sample to playdough consistency
 - Make a ball and poke it:
 - Does it fall apart?
 - Does it hold together?
 - Squeeze a ribbon:
 - Less than 1 inch?
 - Between 1 inch and 2 inches?
 - More than 2 inches?
 - Wet it excessively and feel it:
 - Is it slippery?
 - Is it gritty?

Back in 20 minutes!

- Lab Time
- Break

Mineral

Organic

Pore Space

Sustainable Soil

- Soil Food Web
- Organisms build soil
- Encourage them with proper organic matter, moisture, oxygen, etc.

Mineral

• Organic

Pore Space

Sand Particle

Soil Aggregation

- Created by bacteria, fungi and humic acid from organic matter
- Allows water
 - Infiltration / percolation
 storage
 Water moves easily through soli with good structure

Silt Particle

Soil Aggregation

Creates soil pores which contain

<u>OWL</u>: <u>O</u>xyen <u>W</u>ater <u>L</u>ife

- Purifies runoff water
- Creates water holding capacity

Film of Water Empty Pore Space

Water enter the root hairs by OSMOSIS.

Water Uptake by Plant Roots

Soil Compaction

LOW MEDIUM HIGH

Organic Matter

- Reverses compaction
- Improves root penetration
- Improves plant success

Remediating Compaction

- Add organic matter
- Build the health of the soil food web
- By the way ... ADD ORGANIC MATTER!
 - IN the ground: Compost for Soil Amendment when planting
 - ON the ground: Mulch after planting

Compost Soil Amendment

Mulch on ground

Soil Amendment

- Use compost when planting
- Small particles, usually less than 1/4"
- Mix compost with backfill soil
 - 30% most plants
 - 15% natives in disturbed soil
- Available in bags or bulk

Soil Amendment

Planting

- Dig hole 2 x wide
- Fill hole with water before planting
- Loosen or slice roots
- Plant crown above soil level

- 1) ROOTBALL.
- CROWN-1* ABOVE FINISH GRADE.
- (3) FINISH GRADE.
- 4 2 X ROOTBALL DIA.
- 5 BACKFILL MIX (SEE SPECS.).
- 6 PLANT TABLETS (SEE SPECS.).
- 7 2" MAX. DEPTH.
- B TOP OF PAVING.
- 9 4" HIGH WATERING BASIN.
- 0 UNDISTURBED NATIVE SOIL.
- 1 PROVIDE 2" MULCH LAYER. IN ALL SHRUB AREAS.
- 2 NATIVE SOIL BACKFILL

 Use amended soil mixture backfill planting hole

NO SCALE

- SET CROWN OF ROOTBALL. EQUAL TO ORIGINAL GRADE.
- 2 ROOT BALL
- ③ PLANT SHRUBS PER DETAIL C2, SHEET L-423.
- ④ PLANT PIT 2X ROOTBALL WIDTH.
- ⑤ LINE OF ORIGINAL 2:1 SLOPE.
- 1:1 DOWNHILL FILL
- 1:1 UPHILL CUT
- NOTE: ALL SHRUB BEDS LESS THAN 3:1 SLOPE SHALL RECEIVE A 3" LAYER PREMIUM MEDIUM GRIND SHREDDED REDWOOD BARK MULCH.

SHRUB PLANTING DETAIL

Mulch

- Blanket over soil surface
- Continues to feed the soil as it breaks down
- Adds organic matter in areas already planted
- Prevents
 - Erosion
 - Evaporation
 - Weeds
 - Compaction

Mulch Types

• Longevity: Wood Chips or Bark

Wood Chip Mulch Pathways not beds or slopes NOT for soil health or slopes

Mulch Types

- <u>Soil Building</u>: chipped tree trimmings or coarse compost
 - Varied particle sized
 - Texture
 - Water passes through
 - Holds in place on slopes and in wind

Chipped Mulch

Blended Mulch

Mulch Application:

- After planting, lay 4" layer on top of soil
- Leave open space around plant stem or crown
- Add additional mulch when areas are thin
- Rule of thumb:
 - 1 1/4 CY covers about 100 sq. ft. at 4" depth

Brush Mulch / Chipped Mulch

Products at Miramar Greenery: Soil Building

Material Type	Description	Price/Cubic Yard (incl. tax & loading)
City Resident Self-Loading Composted 4" Mulch	Up to 2 cubic yard	FREE
1/2" Compost	10 week processing of yard waste and food waste, screened to 1/2"	\$12
4" Mulch	2 week processing of yard waste only	\$ 5
2" Mulch - Preferred Mulch	2 week processing of brush and branches (no curbside material)	\$12
Coarse Chips (2" Compost Overs) (some plastic contamination)	10 week processing of yard waste & food waste, screen to 1/2" - 2"	\$ 5
- Natural Wood Chips Fine for Paths	Logs ground to 2" - 4" and screened to remove fines	\$24
-Natural 1/2" Fines	-Logs ground and screened to 1/2"	\$2 4
Plain Wood Chips Fine for Paths	Dimensional lumber ground to 2" - 4"	\$2 4
Colored Wood Chips: red & brown	Dimensional lumber ground to 2" - 4" and colored with non-toxic dye	\$3 4

Abcdefg Do not use for sheet mulching Recommended

How does your soil handle water?

- Organic matter remediates compaction
- Percolation and infiltration effected by
 - Soil texture
 - Soil aggregation
 - Layers of compaction or rock

Soil Drainage and Percolation Test (Homeowner's Guide)

Day 1

- 1. Dig one cubic foot hole (12"x12"x12")
- 2. Fill the hole with water to saturate the soil
- 3. Let drain overnight
- Day 2
 - 1. Lay a stick over the hole
 - 2. Refill the hole with water to the level of the stick
 - 3. Wait one hour
 - Measure how far the water level has dropped to determine the infiltration rate per hour

Note: Use the soil from the hole to do a worm count & test the texture of your soil

Drainage Test

Here's a simple way to evaluate your soil drainage.

Step 3:

Dig a hole 12 inches wide x 12 inches deep, putting the soil to the side to be used for the Squeeze Test and the Worm Test.

Fill the hole with water and let it drain overnight.

Use a stick to span the hole from the top of the stick to the bottom of the pit. Measure the distance again in one hour.

Soil Drainage Field Percolation Test

Inches per Hr.	Drainage	Solutions
Less than 1"	Slow	Add organics Create mounds Select tolerant plants
1"- 3"	OK	
More than 4"	Fast	Add organics Create mounds Select tolerant plants

Step 3: Evaluate Your Site: Watershed and Soil

First Flush

- First rain after dry period
- Washes off pollutants deposited during dry period
- Discharge of higher concentrations of pollutants in early part of a storm (relative to the later part of the storm)
- 1,000 SF roof has
 - 372 gallons for 85%, 24 Hr. Storm at .6 inches of rainfall
- Soil is important tool for management of First Flush

First Flush

Old Town, San Diego

First Seasonal Flush

Can the polluted water be cleaned?

YES! Healthy soil breaks down pollutants.

Can the water be utilized?

YES! It can be stored in

- Soil
- Rain Barrels
- Cisterns

Subsequent Storm Event

Storm Water Requirements for Water Quality Treatment

Permanent new Storm Water requirements are now mandatory if <u>Renovation</u> project has <u>5,000 SF of impermeable surface</u> replaced or added

If applicable:

- Retain and reuse 100% of Design Capture Volume (DCV)
- If 100% is not feasible: Biofiltration (Bioretention and Rain Gardens)

Typically this will include hiring design professionals to prepare a grading plan, an irrigation plan and a planting plan.

Most residential projects are not subject to these requirements.

Note: for complete information, see Model BMP Manual, San Diego Region, Table 1-2, page 1-6.

Storm Water Requirements for Water Quality Treatment

If Permanent Storm Water BMP's are **not** required:

- You can still be sustainable by incorporating features in your landscape plan such as:
 - Rain barrels
 - Bioinfiltration such as dry creek beds with basins

How do we know how much water to plan for?

- Plan for the 85%, 24 hour rain event
 - San Diego Coastal Typical .6 inches
 - Mountains 1.0
 - Check Isopluvial map for area specifics

Design Capture Volume (DCV)

Impermeable

 Roofs, Concrete, Asphalt, Grouted Pavers

Semi-permeable

 DG, Cobble, Gravel, Compacted Soil

Permeable

 Landscape areas, Amended or Mulched Soils

Design Capture Volume (LID):

 Formula for on-site Design Capture Volume (DCV) for Runoff Factors 85th percentile 24 Hr. Storm:

DCV = C x d x A x (43,560 SF/acre x 1/12 in/ft.)* DCV = C x d x A x 3,630*

* conversion from acres to SF and to CF

DCV = Design Capture Volume in cubic feet

• C = Runoff Factors

Impermeable	0.9
Semi- permeable	0.3
Landscape areas	0.1

- d = 85th Percentile Storm, average regional 0.6
- A = Tributary area in acres
 - 43,560 SF X 1/12 is conversion to CF

Step 3:

Evaluate Your Site: Soil and Watershed

First Flush Techniques:

- Keep water on site
- Slow-Store-Spread-Sink
 - <u>Slow</u> down the speed of the flow
 - <u>Store</u> in basins
 - <u>Spread</u> over wider area
 - Sink into healthy soil

First Flush Techniques: Pitfalls & Problems

- Drainage must be at least 10' from buildings and hardscape
- Expansive clay soil
- Poor percolation

First Flush Techniques: Dry Stream

10' from hardscape

First Flush Techniques: Dry Stream

• 10' minimum from hardscape

Dry Stream

• Optional permeable landscape fabric beneath rock

First Flush Techniques: Rain Barrel

- Install with Diverter to control overflow
- Be sure to plan for overflow if not tied to drainage system
- Check WaterSmartSD.Org for current incentives

First Flush Techniques: Cisterns

10' from hardscape

First Flush Techniques: Infiltration Trench

10' from hardscape

Step 3: Evaluate Your Site: Soil and Watershed

First Flush Techniques: Dry Well

10' from hardscape

Step 3: Evaluate Your Site: Soil and Watershed

First Flush Techniques:

• What Volume is needed?

Step 3: Evaluate Your Site: Soil and Watershed

First Flush Techniques:

• What Volume is needed?

Depth of Storage Area in Inches = CF of Water ÷ (SF of Storage Area ÷ 12)

Be aware of setbacks from buildings and impediments such as tree roots

Site Observations

- Starting point of a successful design
- Take photos
- Assess existing situation
 - 1. LID Conditions
 - 2. Structural Conditions
 - 3. Design Considerations
 - 4. Growing Conditions

SIGH	
Homework for Class 2	
STE INVENTORY AND ANALYSIS CHECKUST	
Highlight most important information for your Design Coach	
Take photos and bring them to the next class	
Low Impact Development Conditions and Opportunities (L-2)	
Make notes of the following on your LID U2 base plant	
Where does the water flow from?	
 Draiby: Search, planter, Cancreté 	
 Swoles 	
 Slopes (location and estimated %) 	
Where does it flow to?	
 Drainage system to gutter8 	
 Direction of flow from slopes? 	
 Where does it pool? 	
Fermedatty of dreds Solutionics total	
 Bain banel? 	
 Gutter to Storm Drains to Ocean 	

What volume of water can you slow, spread, store and sink? What size and how deep will the space need to be?

Site Observations

LID Conditions

- Where does it flow from?
- Where does it flow to?
- record on your LID L-2 plan

Site Observations

Structural Conditions

- Drainage: record on your LID L-2 plan
- Utilities / Easements / Sewer Clean outs
- Irrigation types and locations

Step 3: Evaluate Your Site: Irrigation

Anatomy of an Irrigation System

Site Observations

Design Considerations

- House style
- Views
- Functional
 - Use patterns
 - Prevailing wind
 - Necessary shade
 - Screening

woter amort	
Workshop 1 SITE NEVENTO	formwork RY AND ANALYSIS CHECKLIST
Take pha	os and bring them to class next week
Existing Stru Unites: w	ictural Considerations for note: AC, unit, but care, those or out area, ownear or undeposed utils, tree, ward for e
Easimer	
Locate d	writiouts
Dialnage	
Saver Ch	an outs
ingation	nes and components unrealise and increases
Londhorm	hultane chorgen ingester angest ar service
Access De House Re	ign Considerations cost color of house and materias
Door & Vi	ndow locations; locate on plan and identify some
Views Re	cord extring views to preverve, views to frame/explait/create, views to miligrate.

Site Observations

Growing Conditions

- Plants to keep
- Soil Type
- Exposure: sun/shade/wind
- Wet / Dry patterns
- Microclimate:
 - Low areas
 - Sunset Western Garden Climate Zone

Homework for Class 2:

Homework sheets are located in the Notebook at the end of the Class 1 Section

Solution

1. Read: <u>A Homeowner's Guide to a WaterSmart Landscape</u> Pages 1- 17 <u>Sustainable Landscape Guidelines</u> Pages 1 - 45

Less than 1'

More than 4"

2. Do: Soil Drainage Test

6.

- 3. Do: Evaluate Drainage Features on LID L-2 Base Plan Conduct Site Analysis
- 4. Identify: Your star rating 📩 🕍
- 5. Collect: Turf sample- one for each type of lawn (bring to next class)
 - Watch: E-Learning Videos Episodes 1 through 8 http://landscapemakeover.watersmart.org

Homework

Next Session:

Landscape Design

- Shape your Space
- Design Factors
- Plant Selection
- Functional Planning
- Putting It Together

